Time-dependent Demixing of Task-relevant Eeg Sources

نویسندگان

  • N. J. Hill
  • J. Farquhar
  • T. N. Lal
  • B. Schölkopf
چکیده

Given a spatial filtering algorithm that has allowed us to identify task-relevant EEG sources, we present a simple approach for monitoring the activity of these sources while remaining relatively robust to changes in other (task-irrelevant) brain activity. The idea is to keep spatial patterns fixed rather than spatial filters, when transferring from training to test sessions or from one time window to another. We show that a fixed spatial pattern (FSP) approach, using a moving-window estimate of signal covariances, can be more robust to non-stationarity than a fixed spatial filter (FSF) approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How Many Electrodes Are Really Needed for EEG-Based Mobile Brain Imaging?

A noninvasive method for imaging the human brain during mobile activities could have far reaching benefits for studies of human motor control, for research and treatment of neurological disabilities, and for brain-controlled powered prosthetic limbs or orthoses. Several recent studies have demonstrated that electroencephalography (EEG) can be used to image the brain during locomotion provided t...

متن کامل

Discriminative Learning of Propagation and Spatial Pattern for Motor Imagery EEG Analysis

Effective learning and recovery of relevant source brain activity patterns is a major challenge to brain-computer interface using scalp EEG. Various spatial filtering solutions have been developed. Most current methods estimate an instantaneous demixing with the assumption of uncorrelatedness of the source signals. However, recent evidence in neuroscience suggests that multiple brain regions co...

متن کامل

EEG signatures of arm isometric exertions in preparation, planning and execution

The electroencephalographic (EEG) activity patterns in humans during motor behaviour provide insight into normal motor control processes and for diagnostic and rehabilitation applications. While the patterns preceding brisk voluntary movements, and especially movement execution, are well described, there are few EEG studies that address the cortical activation patterns seen in isometric exertio...

متن کامل

Applying Genetic Algorithm to EEG Signals for Feature Reduction in Mental Task Classification

Brain-Computer interface systems are a new mode of communication which provides a new path between brain and its surrounding by processing EEG signals measured in different mental states.  Therefore, choosing suitable features is demanded for a good BCI communication. In this regard, one of the points to be considered is feature vector dimensionality. We present a method of feature reduction us...

متن کامل

Classification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in EEG Signal

The right and left hand Motor Imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006